Γράφει ο Θεολόγης Ανδρονίδης
Για τον Πυθαγόρα, ο αριθμός ήταν ένα οπτικό σύμβολο και όχι μια αφηρημένη σχέση. Ολόκληρη η αρχαιότητα αντιλαμβάνεται τους αριθμούς ως μονάδες μέτρησης, ως μεγέθη, γραμμές, επιφάνειες. Όλα τα αρχαία μαθηματικά είναι σε τελική ανάλυση στερεομετρία. Ο Ευκλείδης όταν μιλάει για ένα τρίγωνο αναφέρεται σε μια επιφάνεια ενός σώματος, ποτέ δεν σκέφτεται ένα σύστημα τριών τεμνομένων ευθειών ή, ακόμη χειρότερα, τρία σημεία στο χώρο. Ο αρχαίος αριθμός δεν αναφέρεται σε σχέσεις στο χώρο αλλά σε ενότητες απτές, χωριστές για το ανθρώπινο μάτι. Έτσι η αρχαιότητα γνωρίζει μόνο φυσικούς αριθμούς που είναι θετικοί και ακέραιοι. Δεν γνωρίζει το μηδέν. Η ιδέα των αρρήτων αριθμών δηλαδή των δεκαδικών με άπειρα μη επαναλαμβανόμενα ψηφία παραμένει ασύλληπτη για το ελληνικό πνεύμα. Ο Ευκλείδης λέει, ότι τα ασύμμετρα μέρη μιας ευθείας δεν συμπεριφέρονται σαν αριθμοί. Πολύ δε περισσότερο, ο υπερβατικός αριθμός δεν είναι καν μέγεθος διότι ένας τέτοιος αριθμός πχ το π (η σχέση περιφέρειας προς την διάμετρο κύκλου) δεν μπορεί να παρασταθεί γεωμετρικά. Ο άρρητος, λοιπόν, αριθμός παρ’ ότι δεν είναι χάος, αλλά ένα κλειστό μέγεθος, παίρνει τον χαρακτήρα ενός άλλου είδους αριθμού που είναι έξω από την αίσθηση του κόσμου για τους αρχαίους, είναι κάτι μυστηριώδες και ο μαθηματικός βρίσκεται προ της πύλης της κολάσεως, στην αποκάλυψη ενός τρομερού μυστικού της ίδιας της ύπαρξης. Εδώ έχει τις καταβολές του ο μύθος που μας μιλά για το θάνατο από ναυάγιο του πρώτου αποκαλύψαντα το μυστικό. Επειδή το άρρητο και μη εικονιζόμενο πρέπει να παραμείνει πάντα εν κρυπτώ και παραβύστω. Είναι ο ίδιος φόβος που έκανε τον Έλληνα να τρομάζει μπροστά στην επέκταση των πόλεων-κρατών σε μεγαλύτερες επικράτειες, στη κατασκευή μεγάλων δρόμων, μπροστά στην αστρονομία των Βαβυλωνίων που διαπερνά άπειρους έναστρους χώρους, και μπροστά στην ιδέα να εγκαταλείψει τη Μεσόγειο, κάτι που τόλμησαν οι Αιγύπτιοι και οι Φοίνικες. Με τους άρρητους αριθμούς καταλυόταν η αγαλματώδης σειρά των ακεραίων αριθμών που αντιπροσώπευαν μια τέλεια τάξη του κόσμου και φαινόταν ως ανοσιούργημα κατά του ίδιου του Θεού. Αυτό το συναίσθημα είναι έκδηλο στον Τίμαιο του Πλάτωνα. Με τη μετατροπή της ασυνεχούς σειράς των αριθμών σε ένα συνεχές δεν αμφισβητείται μόνο η έννοια του αριθμού αλλά και η έννοια του ίδιου του αρχαίου κόσμου. Το όλο πρόβλημα, γλαφυρά μας το αναπαριστά μια αρχαία τραγωδία, στην οποία ένας θρυλικός βασιλεύς της Κρήτης, θρηνεί διότι το κενοτάφιο που προορίζεται για τον γιό του είναι πολύ μικρό. Ζητά, λοιπόν να διπλασιασθεί ο όγκος του διατηρώντας όμως, το κυβικό σχήματα του. Επίσης το πρόβλημα αυτό έγινε διάσημο, όταν οι κάτοικοι της Δήλου ρώτησαν το Μαντείο των Δελφών τι να πράξουν για να σταματήσουν το λοιμό που μάστιζε το νησί τους. Και το Μαντείο απάντησε ότι έπρεπε να διπλασιάσουν τον όγκο του κυβικού βωμού του Απόλλωνα. Το πρόβλημα, όμως, το Δήλιον πρόβλημα, όπως έμεινε στην ιστορία, δεν έχει γεωμετρική λύση.
Επίσης για τους αρχαίους οι αριθμοί έχουν μεταμαθηματικό νόημα.
Ο 1 είναι η αρχή όχι μόνο όλων των πραγματικών αριθμών αλλά και κάθε μεγέθους, κάθε μέτρου, κάθε υλικότητας. Στους Πυθαγορείους δε, ήταν σύμβολο της μήτρας, της πηγής της ζωής .
Το 2 ήταν η αρσενική αρχή και το σύμβολό του, ο φαλλός.
Το ιερό 3 δήλωνε την πράξη της ένωσης, του άνδρα και της γυναίκας, την τεκνοποιία και το σύμβολό του ήταν η συνένωση των δυο πρώτων αριθμών. Καταλαβαίνετε, λοιπόν, γιατί η ανακάλυψη του αρρήτου αριθμού είναι ένα ανοσιούργημα, η διασάλευση της τεκνοποιητικής τάξης που έχουν θέσει οι ίδιοι οι θεοί.
Είναι έκδηλος ο τρόμος των Ελλήνων εμπρός στην διασάλευση της κοσμικής τάξης όπως, τουλάχιστον, τον προσλαμβάνουμε από τις αρχαίες τραγωδίες. Δεν είναι, άραγε, ο ήρωας αυτός που προκαλεί, ακουσίως ή εκουσίως, την παραβίαση της τάξης των Θεών;
Έτσι στα αρχαία μαθηματικά δεν μπορούν να υπάρξουν ούτε καν οι αρνητικοί αριθμοί πόσο μάλλον το μηδέν σαν αριθμός. Το (-2)*(-3)=+6 ούτε μπορεί να παρασταθεί ούτε είναι ιδέα μεγέθους. Ό,τι δεν μπορεί να σχεδιασθεί δεν είναι αριθμός. Εδώ έχει και την αρχή της η αιτιολογική απόδειξη του Θεού. Όπως όλα τα πράγματα έχουν κάποια αρχή έτσι και αρχή των πάντων είναι ο Θεός. Αυτό, όμως ισχύει μόνον αν οι αριθμοί ξεκινούν από το ένα και είναι μόνον θετικοί. Ενώ η ύπαρξη αρνητικών αριθμών που προηγούνται καθιστά αδύναμη την επιχειρηματολογία. Ο Πλάτων, ο Αρχύτας , ο Εύδοξος μιλούν για αριθμούς επιφανειών και σωμάτων αυτό που εμείς έχουμε ως δεύτερη και τρίτη δύναμη. Όπως καταλαβαίνετε, ανώτερες δυνάμεις είναι ανύπαρκτες. Φανταστείτε κλασματικές ή ακόμη χειρότερα μιγαδικές. Όλα αυτά είναι παράλογα γιαντους αρχαίους. Ούτε μπορούσε να γεννηθεί η ιδέα του μηδενός μιας και κάτι τέτοιο δεν μπορεί να σχεδιασθεί.
Συνεχίζεται